Nanoporous membranes enable concentration and transport in fully wet paper-based assays.

نویسندگان

  • Max M Gong
  • Pei Zhang
  • Brendan D MacDonald
  • David Sinton
چکیده

Low-cost paper-based assays are emerging as the platform for diagnostics worldwide. Paper does not, however, readily enable advanced functionality required for complex diagnostics, such as analyte concentration and controlled analyte transport. That is, after the initial wetting, no further analyte manipulation is possible. Here, we demonstrate active concentration and transport of analytes in fully wet paper-based assays by leveraging nanoporous material (mean pore diameter ≈ 4 nm) and ion concentration polarization. Two classes of devices are developed, an external stamp-like device with the nanoporous material separate from the paper-based assay, and an in-paper device patterned with the nanoporous material. Experimental results demonstrate up to 40-fold concentration of a fluorescent tracer in fully wet paper, and directional transport of the tracer over centimeters with efficiencies up to 96%. In-paper devices are applied to concentrate protein and colored dye, extending their limits of detection from ∼10 to ∼2 pmol/mL and from ∼40 to ∼10 μM, respectively. This approach is demonstrated in nitrocellulose membrane as well as paper, and the added cost of the nanoporous material is very low at ∼0.015 USD per device. The result is a major advance in analyte concentration and manipulation for the growing field of low-cost paper-based assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.

Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a uni...

متن کامل

Ordered Nanoporous Alumina Membranes Formed in Oxalic/Phosphoric Acid Using Hard Anodization

Highly self-ordered alumina nanopore arrays were fabricated using hard anodization technique in different mixtures of oxalic/phosphoric acid. The phosphoric acid concentration was varied from 0.05 to 0.3 M while the oxalic acid concentration was changed between 0.3 and 0.4 M. The self ordered nanoporous arrays were obtained in anodization voltage changing from 130 to 200 V. The interpore distan...

متن کامل

Microfluidic systems with ion-selective membranes.

When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and m...

متن کامل

Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes

A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...

متن کامل

Electrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization

In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 86 16  شماره 

صفحات  -

تاریخ انتشار 2014